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Joint-Limb Compound Triangulation With Co-Fixing
for Stereoscopic Human Pose Estimation

Zhuo Chen , Xiaoyue Wan , Yiming Bao , and Xu Zhao , Member, IEEE

Abstract—As a special subset of multi-view settings for 3D
human pose estimation, stereoscopic settings show promising
applications in practice since they are not ill-posed but could
be as mobile as monocular ones. However, when there are only
two views, the problems of occlusions and “double counting”
(ambiguity between symmetric joints) pose greater challenges that
are not addressed by previous approaches. On this concern, we
propose a novel framework to detect limb orientations in field
form and incorporate them explicitly with joint features. Two
modules are proposed to realize the fusion. At 3D level, we design
compound triangulation as an explicit module that produces the
optimal pose using 2D joint locations and limb orientations. The
module is derived from reformulating triangulation in 3D space,
and expanding it with the optimization of limb orientations. At
2D level, we propose a parameter-free module named co-fixing to
enable joint and limb features to fix each other to alleviate the
impact of “double counting.” Features from both parts are first
used to infer each other via simple convolutions and then fixed by
the inferred ones respectively. We test our method on two public
benchmarks, Human3.6M and Total Capture, and our method
achieves state-of-the-art performance on stereoscopic settings and
comparable results on common 4-view benchmarks.

Index Terms—Human pose estimation, triangulation, machine
learning.

I. INTRODUCTION

3DHUMAN Pose Estimation (3D HPE) is a fundamental
and important task in multimedia, which aims to

locate anatomy key points of human body in 3D space. Due to
its wide application in intelligent medicare [1], action recogni-
tion [2], sports [3], human-computer interaction, etc., 3D HPE
has drawn great attention in the last decades.

Recently, multi-view HPE methods have shown great advance
in estimation performance [1], [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15], most of which follow the methodol-
ogy to first detect 2D key-points and then calculate 3D poses via
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triangulation frameworks [16]. Compared to single RGB im-
ages [17], [18], [19], multi-view settings effectively eliminate
depth uncertainty, thus leading to more plausible and accurate
poses. However, most multi-view settings require enough in-
door space, careful installment, and accurate calibrations. Such
conditions could sometimes be cumbersome and impractical.

Actually, to eliminate depth uncertainty, the number of cam-
eras can be as small as 2, which is known as stereo [20]. Stereo
systems are much easier to set up and calibrate than those with
more views. They could even be made portable to fit in limited
room or outdoor scenes. In contrast to their promising appli-
cations, explorations on them are however quite limited. The
sparsity of views magnifies some problems that could not be
well addressed by current multi-view HPE methods. Firstly,
as a long-standing problem, occlusions are typically tackled
by cross-view feature fusion [6], [8], [10], [21] or learnable
weights [4]. However, these methods work under the assumption
that visible views are enough to locate the joint, which is appar-
ently invalid in stereo settings. Secondly, as an innate problem
in learning-based 2D human pose estimation, “double count-
ing” (i.e., the ambiguity between symmetric joints) [22] also
impedes accurate joint locations. Though selecting view sub-
sets to generate hypotheses presents a promising solution [14],
it is impossible under stereoscopic settings as both views are
necessary for unique joint locations.

The key to the above problems is to design and detect features
that encode different aspects other than 2D joint locations and
provide necessary information for monocular 3D pose estima-
tion. Therefore, the features should focus on body parts between
joints, i.e., limbs, and indicate 3D limb orientations. Fig. 1 shows
where these features are located and to what extent they can help
reconstruct a 3D pose. The orientations eliminate the depth am-
biguity between joints so features from merely one view are
enough for reconstructing relative 3D poses. If more than one
view is available, then the extra information helps refine the 3D
poses by posing an well-determined setting.

According to our trial experiments, limb orientation regres-
sion should be combined with positional implications for bet-
ter convergence, so limb fields are suitable descriptors. Previ-
ous methods have provided detailed studies on the application
of such fields in HPE [17], [18], [19], [23], [24], [25]. They
first prevailed as 2D fields named Part Affinity Fields (PAFs) in
OpenPose [23], [24]. Inspired by PAFs, some recent monocu-
lar 3D HPE methods [17], [18], [19], [25] utilize similar fields
to imply limb orientations or depths and have validated the
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Fig. 1. Illustration of feature sources and estimation results. Blue rectangles
imply the focus of limb features, which are different from joint features shown
in red circles. With the 2D joint locations and 3D limb orientations from merely
one view, we can estimate the 3D poses relative to scale change, as in 1© and
2© separately. If the features from both views are available, then it becomes 1©

+ 2© and is well-determined, leading to the estimation of an absolute 3D pose.

effects of such features. In this work, we describe limb fea-
tures using smoothed Limb Orientation Fields (LOFs), which
provide point-level orientation predictions over the target limb.
Based on LOFs, we can take a closer look at the aforementioned
problems and build the framework shown in Fig. 2.

In the proposed framework, occlusions are solved by fusing
limb orientations and joint locations naturally as indicated in
Fig. 1. The fusion module, known as compound triangulation, is
an explicit and differentiable function of detected joint and limb
features, allowing the whole framework to be trained end-to-end.
To derive it, we review traditional linear triangulation [26] in 3D
space and model both the re-projection error of joint positions
and error of limb estimations in 3D Euclidean space. The func-
tion is simply the solution of minimizing the sum of the two
error terms. Moreover, we add learnable weights to lower the
influence of occluded views, so that the result is derived from
visible features and is therefore more reliable.

Since compound triangulation incorporates features after the
regression of heatmaps, it cannot filter out points influenced
by “double counting.” Therefore, we propose co-fixing module
to utilize joint and limb features to fix each other at heatmap
level. The general process is to first fix LOFs by multiplying
fields inferred from joint confidence maps, and then fix joints
by inferred maps from LOFs. The bi-directional inference is
done by convolutions with a carefully designed kernel, so the
procedure is simple and computationally efficient. Essentially,
co-fixing module utilizes neighboring joint and limb estimations
to correct the current joint. By taking a broader range of body
parts into consideration, the randomly mixed symmetric joints
tend to be distinguished.

We conduct experiments on Human3.6M and Total Capture
Datasets, both on common 4-view settings and stereoscopic
settings. Compared to previous methods, our method achieves
≥ 3.6% error drop in stereoscopic scenes, which aligns with our
goal. On common 4-view benchmarks, the result of our method
is also comparable to previous methods. We also report a de-
tailed analysis to explore the principle in stereo performance
promotion and analyze the effect of every submodule.

In all, our contributions include:
1) We propose compound triangulation, an algebraic fusion

method for multi-view joint position and limb pose esti-
mations. It explicitly incorporates Limb Orientation Field
to multi-view 3D pose estimation.

2) We propose co-fixing module which leverages limb and
joint predictions to fix each other bi-directionally, as well
as the rules to filter out negative fixes.

3) We design and conduct experiments on stereoscopic
scenes in Human3.6M and Total Capture datasets and our
framework achieves state-of-the-art result.

The rest of the paper is organized as follows: Section II pro-
vides a literature review of studies related to human pose estima-
tion. Section III describes our method, and Section IV discusses
the relative technical details. In Section V, experiment settings,
results and corresponding analysis are reported. Finally, Sec-
tion VI draws a conclusion and indicates future work.

II. RELATED WORK

In this section, we first review general multi-view HPE meth-
ods, then present works on limb features and refining methods
that apply similar conceptions as ours.

A. 3D HPE From Multi-View Images

Early trials on multi-view 3D human pose estimation are
mostly segmentation-based, where hand-crafted features based
on body silhouettes and textures are used [27], [28], [29], [30].
The pose was generated by optimizing a parametric model using
probabilistic analysis and only achieved limited performance. As
deep learning largely promotes 2D pose estimation [22], [31],
[32], [33], [34], the dominant framework of multi-view HPE
gradually shifts to a two-staged procedure: First estimate 2D
poses from each view, then leverage them to 3D space by fusing
multi-view estimations via geometric methods [4], [5].

On that basis, recent attempts to further promote 3D HPE
mainly focus on sufficiently exploiting the complementary rela-
tionships between different views. Such methods include cross-
view feature fusion [6], [8], [10], [21], introducing learnable
weights [4], [14], and utilizing volumetric representations [4],
[9], [15]. Though proved to be effective in dealing with occlu-
sions on public benchmarks, they are not well suited for stereo
scenes as only one view is not enough to complement the other
occluded one. Our method overcomes the problem by exploit-
ing features between joints and makes better predictions under
stereoscopic settings.

B. Limb Features in Human Pose Estimation

The features on anatomical key points, i.e. joints, are already
well-studied, but the features over limbs are still under explo-
ration. OpenPose [23], [24] proposes Part Affinity Field (PAF)
to describe the connections between joints, which indicates that
features in between are somehow available. After the success
of OpenPose, plenty of works utilize similar frameworks to
solve various problems [3], [35], [36]. OpenPose focuses on
bottom-up multi-person pose estimation, where the connections
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Fig. 2. The overall framework to detect and fuse limb orientations in multi-view 3D human pose estimation. A 2D backbone is first utilized to detect joint
confidence maps and LOFs. In co-fixing module, the previously derived joint and limb feature maps get fixed by the inferred feature maps from each other. Note
that this stage is for post-processing and merely activated in testing. For joint i and limb (i, j) on camera k, joint positions xik , limb positions pijk and orientations

nijk are calculated from previous heatmaps, and then fed into compound triangulation. It is an optimization of the aggregation of error terms over joints (ejp
ik

,
blue errors in the upper image) and limbs (eloijk , blue hollow errors in the lower image).

between joints are not implied by joint labels so PAF is necessary
and effective.

Later, those features were found capable of encoding depth
so similar conceptions were applied to 3D reconstruction. For
limb features, two types of fields are extracted: 3D orientation
fields [17], [18], [25] used to extract limb orientations, and depth
maps [19] used to indicate explicit depths of the body parts. Both
achieved improvement on monocular 3D HPE over previous
methods. Such ideas can be transferred to multi-view settings,
but little attention has yet been paid probably because joint fea-
tures are already sufficient to solve a pose. But this could be
wrong when occlusions occur, especially in stereo. Moreover,
our method proves that incorporating limb features can also ben-
efit general multi-view scenes.

C. 3D and 2D Human Pose Refinement

Some recent works try to refine pose in 3D space, generally
by fusing visual features with other modalities like IMUs [7],
[13] and pose priors [11], [21]. Though similar to our meth-
ods, they emphasize too much on the non-vision counterpart
due to its certainty compared to visual estimations. To cope
with the uncertainty of pose priors, Pictorial Structure Mod-
els (i.e. PSM) [21], [37], [38] are used to build a probabilis-
tic optimization problem, and the optimal pose is derived from
searching in the feasible pose region. However, the searching
procedure is non-differentiable and computationally expensive,
yet our method is free from these drawbacks.

Since 3D poses are based on 2D detections, refining 2D pose
estimations is also important for HPE tasks. Though stacked
structures [22], [31], [33] are proved effective in solving joint
displacement or “double counting” [39], they cannot cover
all circumstances due to the variety of body poses. Recently
Ke et al [40] proposes strcture-aware loss to strenthen the match-
ing of keypoints. Kamel et al [41] propose pose correction branch

(CNet) to allow for larger corrections. These methods success-
fully encode the innate connections from training data, yet our
co-fixing method provides a parameter-free solution that leads
to good performance.

III. METHOD

Fig. 2 shows the framework of our method. In this section,
we first list the main procedures, and then describe the techni-
cal details. We follow the order of training - inference so the
inference-only module, co-fixing, is introduced at last.

1) Limb Orientation Field (LOF): LOFs are 2D maps com-
posed of 3D vectors indicating the orientation of the target
limb. They are estimated along the joint confidence maps
using a shared backbone.

2) Parameter regression: The 2D joint locations, 2D limb
positions and 3D limb orientations are regressed from the
joint confidence maps and LOFs. The regression is done
by soft-argmax and weighted average.

3) Compound triangulation: The regressed parameters are
fed into a closed-form triangulation function to produce
the optimal pose. The function, named Compound Trian-
gulation, is the solution to a compound minimization of
joint and limb estimation errors.

4) Co-fixing during inference: While inference, the joint con-
fidences are used to infer limb features, and then the latter
fix the original LOFs via multiplication. LOFs are mean-
while used to fix joint estimations in the same way.

A. Definition of Limb Orientation Field

Limb Orientation Field (LOF) is designed to indicate two as-
pects of a limb: the orientation in 3D space and position on
2D image plane. These vectors are densely distributed local re-
gressers like PAF [23] and POF [17]. Each LOF vector of one
limb represents the orientation with its own, so it points from
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one end joint of the limb to the other. It also predicts the con-
fidence that it is on the limb by its norm. So similar to joint
confidence maps, the vector gets unit length when on the 2D
limb, and shortens as it is located away from the target.

Suppose Xik, Xjk ∈ R3 are the 3D positions of adjacent
joints i, j ∈ [1, nj ] under the local coordinate system of cam-
era k ∈ [1, nc], and xik, xjk ∈ R2 are their projections. Then
the ground truth direction of LOF is defined as Vijk = (Xik −
Xjk)/‖Xik −Xjk‖. Meanwhile, the vector norms, referred to
as norm multipliers, are defined as a Gaussian mapping of the
distance to the 2D limb line segment. Suppose a feature map size
of H ×W . Use D = {[u, v]T ∈ N2|0 ≤ u < W, 0 ≤ v < H}
to represnet the point set of the feature map, then ∀x ∈ D, the
distance is

dijk(x) =

⎧⎨
⎩
‖x− xik‖, if vTijk(x− xik) < 0;

‖x− xjk‖, if vTijk(x− xjk) > 0;

|vTijk⊥(x− xik)|, otherwise.
(1)

where vijk ∈ R2 is the unit vector pointing from xik to xjk on
the image plane, and vijk⊥ ∈ R2 is the unit vector perpendicular
to vijk.

The norm multiplier is then Gaussian mapping of the distance
in (1). With a predefined deviation σ, the ground truth LOF (rep-
resented by F lo

ijk ∈ RH×W×3), is generated by refining vector
norms via the following formula:

F lo
ijk(x) = Vijk exp

{
−dijk(x)

2

σ2

}
. (2)

Compared to PAF, LOF appends an extra dimension perpendic-
ular to the image plane, allowing it to encode depth information.
If only the first two dimensions are considered, then it becomes
the same form as a PAF. We name this PAF-subset of the LOF,
represented by F pa

ijk ∈ RH×W×2.

B. Parameter Regression From Heatmaps

In the proposed framework, 2D backbone outputs a set of joint
confidence maps Hjp

ik and limb orientation fields F lo
ijk. Neces-

sary parameters can be regressed from them, including 2D joint
positions, 2D limb positions and 3D limb orientations.

The joint position x̂ik is predicted by the max values location
the heatmap. Recent methods [4] have proved soft-argmax func-
tion [42] to be a proper approximation for end-to-end training,
so this function is utilized in this stage:

x̂ik =

∑
x∈D x exp{βHjp

ik (x)}∑
x∈D exp{βHjp

ik (x)}
. (3)

where β is a predefined “inverse temporature” to adjust the out-
put.

Similarly, limbs are modeled as straight lines. As all vectors
in LOF predict the same orientation, it is natural to aggregate
the result via weighted average. Once the limb orientation V̂ijk

is known, the limb position is indicated by an arbitrary point
p̂ijk on the limb, which can also be calculated from the norm
multiplier via soft-argmax like joint positions.

V̂ijk =
∑
x∈D

‖F lo
ijk(x)‖F lo

ijk(x). (4)

Fig. 3. Illustration of spatial co-relations between image plane (πk in orange),
camera center Ok , the regressed position p̂ijk and orientation V̂ijk , and the
plane containing the line set Lijk defined by (6) (πLijk

in red). Ok, V̂ijk ∈
πLijk

. lijk ∈ π ∩ πLijk
is the estimated limb projection line and p̂ijk ∈ lijk

is the actual parameter regressed from LOF. We can see where lines in Lijk are
located in space.

p̂ijk =

∑
x∈D x exp{β‖F lo

ijk(x)‖}∑
x∈D exp{β‖F lo

ijk(x)‖}
, (5)

The projection from a single view limits the limb pose to a line
set shown in Fig. 3. Assume Kk represents the camera intrinsic,
then this line set is:

Lijk =
{
αK−1

k p̂ijk + λV̂ijk, ∀λ ∈ R|∀α > 0
}
. (6)

Notably, if regarded as a weighted average of unit direction
vectors, (4) is actually not weighted by the norms, but by their
squares. We will discuss this special design in Section IV-A.

C. Compound Triangulation

The process to derive the most likely 3D position from 2D
estimations in different views is usually known as triangula-
tion. Minimizing re-projection error is a common methodology.
For triangulation on points, the optimal solution is already pro-
posed [16], and the linear versions [26] are widely used. How-
ever, re-projection error is not preferrable for limbs because it
drops the necessary depth feature. Therefore, the compound ob-
jective function of joints and limbs is reconsidered in 3D space.

We first review linear triangulation on joints in 3D space,
which is achieved via linearizing reprojection error. Suppose
dk(Xi) is the distance from joint Xi to the image plane k and
x̂ik is the 2D estimation, then the error is reformulated as the
distance between the joint and the re-projection line along the
image plane (See Section IV-B for more details):

ejpik = ‖Xi − dk(Xi)K
−1
k x̂ik‖2. (7)

Similar definition can be applied to limbs with some modifica-
tions. A limb is modeled as a line segment connecting joints Xi

and Xj , i.e., a point set. The projection limits the limb to a line
set Lijk (defined by (6)). One simple definition is the minimum
distance between two elements from both sets, but it finally be-
comes the distance between the near extremity and the plane of
Lijk (πLijk

in Fig. 3). The other one is totally unmeasured. To
tackle this, we calculate the minimum distance between the two
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Fig. 4. Two types of error terms, ejp
ik

and eloijk , in compound triangulation
under one view. Xi is the target joint position. x̂ik and p̂ijk are the estimated
2D position of joint i and position indicator of limb (i, j) on image plane πk .
π′
k//πk and Xi ∈ π′

k . Then ejp
ijk

is the distance between Xi and re-projection

line along π′
k , while eloik is the distance from Xi to lijk ∈ Lijk with the least

distance to Xi and Xj .

extremities and an arbitrary line in L then sum them up.

eloijk = min
α,λi,λj

∑
t∈{i,j}

‖Xt −
(
αK−1

k p̂ijk + λtV̂ijk

)
‖2, (8)

where two distance terms share parameter α because a common
line from L is used, but have independent parameter λ as the
pedals are different. Detailed expression of elo is available in
Supp. I.A. Fig. 4 shows the two error terms in 3D space.

Finally, we iterate (7) over all joints and (8) over all limbs and
sum the results up to get the final optimization problem:

min
Xi,1≤i≤nj

nc∑
k=1

⎛
⎝ nj∑

i=1

wjp
ik e

jp
ik +

∑
(i,j)∈E

wlo
ijke

lo
ijk

⎞
⎠ , (9)

where wjp
i and wlo

i are learnable weights and E is the set of con-
nected joint pairs (|E| = nl). In (9), every single term is quadratic
so it is a quadratic optimization problem. We can trivially get its
solution as a closed-form differentiable function that is applied
to end-to-end training

X̂[1:nj ] = f
(
x̂, V̂ , p̂, w;P

)
. (10)

Among all the inputs, the predicted joint positions x̂, limb orien-
tations V̂ and positions p̂, and weights w are backbone outputs
and receive gradients in back-propagation, while the camera pa-
rametersP are constant. Additionally, the most computationally
complex calculation in f is the inverse of a 3nj × 3nj matrix, so
the complexity is O(nj3). It is called compound triangulation
given that it combines the triangulation over points and limbs.

D. Training Process and Loss Functions

Generally, we apply a two-staged training process: 1. Pre-
training the 2D backbone using the two-branch outputs; 2.
End-to-end training using 3D poses.

The backbone outputs predicted joint heatmaps Hjp
ik along

with LOFs F lo
ijk. We do backbone pre-training using MSE loss

on both outputs before the model is trained end-to-end.

Fig. 5. Illustration of the co-fixing algorithm. The algorithm starts with the
subtraction of the target joint confidence map and one of its neighbors. Then the
map is convolved by C to get an inferred field, which is applied to the original
LOF with a mixed multiplication shown as (16). If the fixing is validated by
predefined rules, the fixed LOF is convolved by C to produce th inferred joint
confidence. Otherwise, the original LOF will be used. Finally, the inferred joint
confidence maps from all neighbors are multiplied to the initial target heatmap
to get it fixed.

With the two maps, the estimated joint position X̂i is derived
via compound triangulation. With known ground truth joint po-
sitions Xgt

i , mean per joint position error, i.e. MPJPE, is gener-
ally a suitable loss function but may be unnecessarily sensitive
to outliers considering the inverse algebra in optimizing (9). To
weaken the influence of outliers, we utilize the soft version in [4]
with ε =20mm in experiment:

Ljp(Xi) =

{‖Xi −Xgt
i ‖2, if ‖Xi −Xgt

i ‖2 < ε2

‖Xi −Xgt
i ‖0.2ε1.8, otherwise

(11)
Aside from the final output, we also supervise the pose calculated
from only 2D poses by linear triangulation X lt

i because we find
it leads to a better result.

However, the above supervisions do not ensure the conver-
gence of LOF predictions. So we introduce another loss to reg-
ularize the pointwise orientation of LOF on limb (i, j), using
the ground truth direction vector V gt

ijk. Pointwise vector norms
mlo

ijk(x) = ‖F lo
ijk(x)‖ are used for normalization.

Lv(F lo
ijk) =

∑
x∈D

∥∥∥mlo
ijk(x)V

gt
ijk − F lo

ijk(x)
∥∥∥2∑

x∈D mlo
ijk(x)

2
(12)

The final loss is:

L=
1

nj

nj∑
i=1

(
Ljp(X̂i)+Ljp

(
X̂ lt

i

))
+

μ

nlnc

∑
(i,j)∈E
1≤k≤nc

Lv
(
F lo
ijk

)

(13)

E. Co-Fixing Between Joints and Limbs

The double counting problem is usually not consistent in joint
predictions and their neighbors. Namely, one joint with an am-
biguous prediction can be contiguous to a clearly located limb
or parent/child joint and vice versa, as shown in Fig. 5. This fact
implies the viability of enhancing both joint and limb predic-
tions at heatmap level based on each other. In practice, limb and
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joint predictions could infer each other and the fixing is simply
the multiplication of inferences and predictions. We refer to this
algorithm as co-fixing.

1) Fixing Via Inferred Feature Maps: We first clarify the
formulation of predictions. As co-fixing is applied on 2D im-
age planes, only the first two dimensions of LOFs, i.e., the
PAF-subset F pa

ijk ∈ RH×W×2, is needed. Meanwhile, the pre-

dicted joint confidence maps are represented byHjp
ijk ∈ RH×W .

In practice, to control the memory usage, all the conver-
sions are realized by simple 2D convolutions with a com-
mon kernel C ∈ R(2h−1)×(2w−1)×2. The kernel is defined by
C(x) = ([w, h]T − x)/‖[w, h]T − x‖(1+γ), where γ is the pre-
defined fading factor. The inferred PAF-subsets F̂ pa

ijk from joints

i and j and joint confidence maps Ĥjp
ijk from limb (i, j) are

F̂ pa
ijk =

(
Hjp

ik −Hjp
jk

)
∗ C, (14)

Ĥjp
ijk = F pa

ijk ∗ C. (15)

By sliding the kernel C over the target feature map of size
H ×W while zero-padding the boundaries, the center of the
kernel traverses all positions inside. Note that the detailed cal-
culations in (14) and (15) are different, depending on the target
dimensions. For a joint confidence map of H ×W in (14), the
unit computation is multiplying values in the map to the cor-
responding vectors in the kernel. In this way, vectors in the re-
sulting 2D field tend to point to or against joint positions. For
a PAF-subset of H ×W × 2 in (15), however, the unit com-
putations are dot products. Thus, the more vectors point to one
location, the larger response the location will manifest.

The next step is to generate fixing factor matrices from the
inferred heatmaps to refine the original predictions via multipli-
cation. For LOFs, the fixing factor matrices are the element-wise
dot products of the original PAF-subsets and the inferred ones.
For joints, the factor matrices are simply the inferred joint confi-
dence maps. Use “◦” to stand for element-wise numeric product,
and “·” for element-wise dot product, then the fixing process
could be described as

F lo′
ijk =

(
F̂ pa
ijk · F pa

ijk

)
◦ F lo

ijk (16)

Hjp′
ik = Hjp

ik ◦ Ĥjp
ij1 k ◦ Ĥjp

ij2 k ◦ · · · ◦ Ĥjp
ijmk (17)

where j1, j2, . . . , jm are all adjacent joints of i.
2) Rules to Filter Out Potentially Negative Fixes: The above

fixing can sometimes be harmful, e.g. when the original pre-
dictions are accurate while their neighboring limbs and joints
(which are used in co-fixing) are not. To avoid this defect, we
leverage some rules to decide whether to apply this fix or not.

To start with, we generate all possible combinations by
whether to fix or not under all views using a predefined score
function f . Use xk to stand for the original prediction of ei-
ther one joint position or limb pose on view k, and x′

k for its
correction. For convenience, we use δk ∈ {0, 1} to represent
the choice between xk and x′

k, i.e., yk = (1− δk)xk + δkx
′
k.

Then a specific combination is represented by a binary number
δ1δ2 · · · δnc(2) and its score is

Sδ1δ2···δnc = f(y1, y2, . . . , ync). (18)

The score function is defined based on cross-view consistency.
We calculate scores between every possible combination and
sum them up if there are more than 2 views. For joints, Symmet-
ric Epipolar Distance (SED) [43] is used as the score function.
For limbs, the function is defined as the variation of predicted
unit orientation vectors under all views. Thus the score functions
for joints and limbs are

f jp(y1, . . . , ync) =

∑
1≤i,j≤nc

i=j
wiwjSED(yi, yj)∑

1≤i,j≤nc

i=j
wiwj

(19)

f lo(y1, . . . , ync) = var(y1, . . . , yn) (20)

In addition, we define relative scores as the score relative to
pre-fixing samples, i.e. s = Sδ1δ2···δnc /S00···0

The smallest score is preferable but not always the best, so
some extra rules are needed. A combination is entitled a success-
ful fix if: 1. (premise) its score is the smallest among all combi-
nations, 2. (effectiveness) its relative score must be smaller than
a certain threshold S0, and 3. (necessity) the pre-fixing score
must be larger than another threshold SM . If any condition is
failed, no fixing will be taken.

In conclusion, the general co-fixing process is to generate
fixed PAF-subsets of LOFs, choose the successful ones to ap-
ply, then generate fixed joint confidence maps and select the
successful combination as the final output. The pseudo-code for
this algorithm is available in Supp. II. Note that due to the 2D
convolutions on each feature map of size H ×W with a kernel
of size (2H − 1)× (2W − 1), co-fixing is of O(ncnjH2 W 2)
complexity.

IV. DISCUSSION

In this section we provide detailed analysis on the design of
the method.

A. Regressing Limb Orientations: Self-Weighted Vs. No Weight

In (4), the special weight, ‖F lo
ijk(x)‖, is introduced for bet-

ter convergence. Actually, if we directly take the average of
all vectors without weights, then the direction will be V̂ ′

ijk =∑
x∈D F lo

ijk(x). The derivatives of V̂ijk and V̂ ′
ijk are different:

∂V̂ijk

∂F lo
ijk(x)

= ‖F lo
ijk(x)‖

(
I +

F lo
ijk(x)F

lo
ijk(x)

T

‖F lo
ijk(x)‖2

)
(21)

∂V̂ ′
ijk

∂F lo
ijk(x)

= I (22)

One major difference between them is when ‖F lo
ijk(x)‖ →

0, ∂V̂ijk/∂F
lo
ijk(x) → 0 but ∂V̂ ′

ijk/∂F
lo
ijk(x) = I . Since

‖F lo
ijk(x)‖ ≈ 0 usually means x is on the background, when the

loss back-propagates to LOFs, our self-weighted average will
hardly update the background points, while no-weight average
will modify all vectors equally, leading to divergence.
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B. Reprojection Error in 3D Space

The general process of lifting linear triangulation to 3D space
is detailed here. Projection takes a simple form in projective
space if the camera projection matrix P is known: x̄ = PX̄ ,
where x̄ ∈ P 2 and X̄ ∈ P 3 are the projected 2D point and global
3D point, both homogeneous. To measure the re-projection er-
ror, x̄ must be converted to Euclidean space via a nonlinear
process. This is where the approximation happens. The com-
mon method linearizes by multiplying the depth term dX . It
transforms the re-projection error to the following form (proof
available in Supp. I.B.):

e =
(
X − d(X)K−1 ˆ̄x

)T
diag

{
f2
x , f

2
y , 0
} (

X − d(X)K−1 ˆ̄x
)
,

(23)
where fx and fy are intrinsic parameters and ˆ̄x = [x̂T , 1]T

is the homogeneous coordinate of the estimated 2D joint.
Usually, there holds fx ≈ fy , so we can directly eliminate
diag{f2

x , f
2
y , 0} and the final objective function is measured in

3D Euclidean distance approximately proportional to (7).

C. Algebraic Advantage of Compound Triangulation

Besides fusing limb features, it is important to notice that
Compound Triangulation is able to bind joints together in opti-
mization. In (8), the shared α binds the two unknowns Xi, Xj

together. The two points are therefore no longer optimized inde-
pendently. Consequently, all key points are connected this way
throughout the tree structure. The triangulation becomes holistic
over all joints, allowing the aggregation of global features.

D. Co-Fixing in Physical Perspective

The relationship between joint confidence maps and LOFs
is like that of electric charges and fields. Actually, the convo-
lutional kernel C is the same as the electrical field of a sin-
gle negative charge located in (h,w). Regard Hjp

ik as a set of
grid-arranged electric charges and F pa

ijk as electric fields. By

convolving C over Hjp
ik , we can get the combined electric field,

which resembles the PAF-subset. Meanwhile, by convolving C
over F pa

ijk, we can find the most likely distribution of electrical
charges to generate such field, thus inferring joint estimations.

V. EXPERIMENT

A. Datasets and Metrics

1) Human3.6M: The Human3.6M Dataset [44] is currently
the largest available single-person 3D HPE benchmark. More
than 3.6M images are captured by 4 cameras at a framerate of
50Hz. The motions are completed by 11 actors and correspond-
ing image sets are marked as S1∼S11. In 3D HPE tasks, by
tradition, S1, S5, S6, S7, and S8 are used as training sets, and
samples of every 64 frames in S9 and S11 are used as test sets.
The annotations are in 33-joint forms, and a 17-joint subset is
used in our experiments as a common benchmark.

2) Total Capture: The Total Capture Dataset [45] is another
large-scale single-person motion capture dataset. 8 HD cam-
eras are used to capture around 1.9M images at a framerate of
60Hz. The image data are organized by intersections of subjects

and actions, where “Walking-2” (W2), “Freestyle-3” (FS3), and
“Acting-3” (A3) of all subjects are used as test sets, and the
rest actions of S1, S2, and S3 are used as the training set. So
there are both seen and unseen subjects in testing. Similarly to
Human3.6M, we sample every 64 frames while testing. Pose
annotations in Total Capture are in 21-joint form, and a 16-joint
subset is used.

3) Metrics: 3D joint estimations are evaluated by the com-
mon Mean Per Joint Position Error (MPJPE) in millimeters,
which is the average Euclidean distance between estimated
joints and ground truth. Two versions are usually used. Abso-
lute MPJPE (MPJPE-ab) takes the average directly in the world
coordinate system, while relative MPJPE (MPJPE-re) is calcu-
lated after aligning the pelvis. Note that when evaluating on Hu-
man3.6M with MPJPE-abs, we follow the previous work [4] to
remove actions with shifted labels. Moreover, we utilize Limb
Angular Error (LAE), the mean angles between GT and pre-
dicted limb orientations, to analyze the angular error of poses
and LOFs.

B. Implementation Details

1) Hyperparameters:
� While regressing parameters using (3) and (5), the inverse

temporature β is an important hyperparameter. Larger β
drives soft-argmax closer to argmax function. This gives
better results in the early training stage and helps with
faster convergence, but increases the difficulty to cope with
quantization error. We follow the previous work [4] to set
β = 100 in experiments as a balance.

� In the overall loss function (13), we set the hyperparameter
μ = 103 to balance the order of magnitudes of 3D losses
and 2D losses. It keepsμLv within (0.01Ljp, 0.1Ljp)most
of the time. Since the supervision of pointwise vector di-
rections is just auxiliary, this setting keeps it functional but
far from dominant.

� Hyperparameters in co-fixing are mostly set empirically.
The fading factor γ is set to 0.5 for Human3.6M and 2 for
Total Capture, We set S0 = 0.25 for both SEDs and limb
orientation variance, and the necessity threshold SM is set
to 400 for the former and 0.1 for the latter.

2) Training Settings: In experiments, ResNet152 [46] is used
as our backbone, following 2 branches of deconvolutional layers
in SimpleBaseline [34], one for extracting joint heatmaps and
the other for LOFs. In the test on Human3.6M, we utilize the pre-
trained backbone weights by Iskakov et al. [4], which is trained
on COCO dataset [47] and fine-tuned jointly on Human3.6M
and MPII [48] datasets. The images are cropped by ground truth
bounding boxes and resized to 384× 384px, with a heatmap size
of 96× 96. In the test on Total Capture, no extra data are used.
We initialize the backbone by the weights pre-trained on Ima-
geNet [49] and use only Total Capture data to train. The images
are also cropped by ground truth bounding boxes but resized to
320× 320px, with a heatmap size of 80× 80.

Both training procedures follow the two-stage pattern in Sec-
tion III-D, with 10 epochs in each stage. We use Adam opti-
mizer [50]. The learning rates are 10−3 in pre-training and 10−4
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TABLE I
COMPARISON TO PREVIOUS STATE-OF-THE-ART METHODS IN MPJPE (mm) ON HUMAN3.6M DATASET

in end-to-end training. On the Linux server with a 16-core Intel
E5-2620 CPU, 32 G RAM, and two NVIDIA TITAN X GPUs,
we set batch size to 6 for 4-view Human3.6M training, 8 for
Total Capture Training, and 16 for Total Capture stereo training.
Correspondingly, the training time per batch is 0.93 s, 0.93 s and
0.99 s.

C. Quantitative Analysis

In this section, our method is compared to previous state-
of-the-art methods on two public datasets. In addition to the
common 4-view test settings, we focus on 2-view settings in
order to test stereoscopic performance. By “Baseline,” we refer
to Algebraic Triangulation (AlgTri.) by Iskakov et al. [4].

1) MPJPE Results on Human3.6M Dataset: The MPJPE re-
sults on Human3.6M are presented in Table I. In traditional
4-view benchmark, our method outperforms the baseline in all
actions with an 8% average error drop. The average performance
exceeds the Volumetric Triangulation method and is comparable
to the previous state-of-the-art AdaFuse [10] method. Specifi-
cally, our method performs well on some hard sub-action sets
like Waiting and SittingDown due to the superiority in han-
dling occlusions. We will discuss this advantage further in Sec-
tion V-D-2.

In stereoscopic setting tests, the weights trained on 4-view
settings are used. The reported errors in Table I are the average
of all possible 2-out-of-4 combinations for the purpose of gen-
erality. In this criterion, our method brings a decrease of 19.2%
in MPJPE-re and 23.1% in MPJPE-ab compared to previous
state-of-the-art methods. As the tests are done on camera set-
tings different from training, it also indicates the adaptability
from more views to less.

2) MPJPE Results on Total Capture: In Total Capture
dataset, our test is also composed of 4-view and 2-view (stereo)
parts, but in all camera settings, models are trained and tested
separately. Following previous works [5], [21], we use cameras

TABLE II
TEST RESULTS ON TOTAL CAPTURE DATASET

1, 3, 5, and 7 in 4-view tests, which are referred to as G4. For
stereo settings, we use 3 groups, i.e., G1: 5 & 6, G2: 1 & 3,
and G3: 1 & 4. As the 8 cameras in Total Capture are located
clockwise, the three groups can represent 3 different lengths
of baselines between stereo camera pairs. We report the 4-view
results in Table II and stereo results in Table III, both in absolute
MPJPE (mm). The experiment results show that our method
achieves SoTA performance under 4-view settings, exceeding
the previous SoTA method by Remelli et al. [5] by 9.8%
and the strong baseline by 5.3%, which is remarkable consid-
ering the boundary effects. Moreover, our method performs
especially well in “freestyle” and “action” subsets, which again
implies that our method is well suited for hard actions with less
common movements and more severe self-occlusions.

The Detailed MPJPEs on all stereoscopic groups are reported
in Table III in comparison with baseline and several SoTA meth-
ods. In these stereoscopic settings, our method gets the best per-
formance, exceeding the baseline by 33.6% and previous SoTA
methods by at least 3.6%. We can draw some conclusions by
analyzing the underlying principles. Cross-view complement in
Epipolar Transformer and AdaFuse ensures good adaptation to
settings with 4 cameras or more, but cannot fit in stereoscopic
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TABLE III
MPJPES (mm) RESULTS ON 3 STEREOSCOPIC SETTINGS IN TOTAL CAPTURE DATASET

Fig. 6. Angular errors on two datasets and representative sub-actions sets.
“TC” and “H36 M” represent Total Capture and Human3.6M datasets in order,
and the following subtitles refer to groups of cameras and sub-actions. Barely
LAE measures limb orientations regressed from LOFs, while Pose LAE mea-
sures those calculated from estimated 3D poses. By “w/o LOF,” we refer to the
triangulation result of merely joint locations from our model. By “single-view,”
limb orientations are measured separately in each view, whereas by “all-view,”
evaluated orientations are the average of the same limbs over all views.

settings because the sparsity of information makes the comple-
ment unpractical. The volume-based VolTri. method is adaptive
to stereoscopic settings because of its capability to encode im-
plicit pose priors via 3D convolutions, and Faster-Voxelpose1

performs worse probably due to the disuse of them. However,
given the accuracy, our methodology to extract more information
from images is potentially more effective.

3) Angular Analysis: To study the reason for performance
enhancing in quantitative aspect, we focus our attention mainly
on the limb orientations, using the angular metric LAE intro-
duced in Section V-A-3. Fig. 6 shows the angular metrics on
both datasets and some particular subsets.

Considering the Pose LAEs from all action sets, the angular
estimations are clearly improved on average. The improvement
could be considered in two stages: 1. From baseline to our model
without LOF branch, where only the trained weights are shifted;
2. Applying LOF branch to correct our estimations. Considering
the first 3 bars in each group in Fig. 6, it seems the first stage
may not necessarily improve the angular metrics, but the second
stage is proved to bring about positive effects.

Actually, compound triangulation is a process to fix pose es-
timations using limb orientations, so as the latter become more
accurate, the improvement magnifies. This is validated by data in
Fig. 6. It also explains why our method fits stereoscopic settings

1Faster-Voxelpose is designed for multi-person 3D HPE, so it includes a
Human Detection Net and a Joint Localization Net. Since Total Capture is a
single-person dataset, we use only Joint Localization Net in our test and use
AlgTri. to provide rough volume positions.

Fig. 7. Joint confidence map comparisons between Baseline method and ours.
The leftmost 3 columns represent the confidence maps of Baseline, ours, and
ground truth. The studied joint names are listed below. In the rightmost column,
the studied key points from different models are marked according to the bottom
legends.

well: LOFs are not so sensitive to camera numbers as triangula-
tion is, so in stereoscopic cases, limb orientations from LOFs are
more accurate than triangulation results, which leads to effective
pose corrections.

In addition, Although limb estimations can sometimes be less
accurate than poses, the fusion process mostly brings positive
correction. This is mainly because the learnable weights wjp

and wlo are capable of eliminating noisy LOFs. Moreover, in
hard cases, limb orientations tend to be more stable than poses
and thus contribute to the robustness.

D. Qualitative Analysis

In this section, we study the qualitative aspects for perfor-
mance boosts in stereoscopic settings.

1) Double Counting Correction: The double counting prob-
lem, i.e. the ambiguity between symmetric joints in 2D detection,
harms 3D pose estimation, especially in stereo. The corrections
happen in two stages: the supervision of LOF in end-to-end
training and post-processing by co-fixing module.

First, the supervision of LOFs shows an implicit and generally
positive effect on 2D estimations. We compare samples from our
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Fig. 8. Case study of co-fixing algorithm. Four cases are illustrated. Aside
from the rightmost GT 2D pose, the rest 6 figures are labeled according to
columns of field norm (pointwise norms of LOFs), joint confidence, and 2D
pose (Remarkably fixed points are marked in yellow) and rows of before and
after co-fixing. Field norm illustrations may contain multiple adjacent limbs,
and they are marked with different colors, e.g., red and green.

Fig. 9. Case study of compound triangulation. For each case, the figures are 2D
poses of the two available views, limb predictions from LOFs from both views
and 3D poses of baseline (linear triangulation), ours(compound triangulation),
and ground truth.

method and the baseline and report results in Fig. 7. Improve-
ments include: shifting displaced or ambiguous predictions to
the correct position like Fig. 7(a), (b), and changing from wrong
to ambiguous state like Fig. 7(c), (d). As LOFs focus on encod-
ing features from limbs, they may force the model to gradually
learn to correlate features of joints and limbs and consequently
form a big picture of the whole limb.

Next, the effects of co-fixing module with specific cases are
reported in Fig. 8, where we conclude that both limb fields and
joint confidence maps tend to shift for the better. Focusing on
joint predictions, it is obvious that the incorrect responses are
repressed. Precise limb predictions clearly contribute to it, as
shown in Fig. 8(a), (c). However, we also find in Fig. 8(b), (d)
that initially ambiguous LOFs can also lead to correct fixes.
The reason can be found in co-fixing procedure. As the reverse
correction incorporates both adjacent joints instead of one, the
ambiguity of limbs is more likely to be solved or alleviated. Thus
the correction is still valid.

2) Effects of LOFs and Compound Triangulation.: In stereo-
scopic settings, the incorporation of limb predictions in triangu-
lation is also important. We illustrate some frames from experi-
mental results of G1 in Fig. 9.

TABLE IV
ABLATION STUDY

In Fig. 9(a), (b), one of the two views is thoroughly or partly
occluded. Traditional triangulation requires ≥ 2 views to accu-
rately locate a joint so the baseline fails to produce plausible
poses. Our method, however, does not require the same. Com-
pound triangulation is able to construct accurate 3D poses even
if only one view is available. It is similar to monocular recon-
struction methods [18], [25], but our method is more flexible
in the capability to tackle multi-view settings: The visible parts
of other views are engaged in triangulation, while the occluded
parts are simply filtered out by learnable weights.

In Fig. 9(c), (d), the persons are fully in view, but self-
occlusions exist. In this case, our method could provide more
clues by LOFs, e.g. the orientations of visible body parts like
right forearms in (c) and (d), which are crucial in driving relative
limbs to the right orientations. To sum up, compound triangula-
tion excels in incorporating the most possible information, and
producing the potentially most accurate 3D pose.

E. Ablation Study

In this section, we study the effects of LOFs, compound tri-
angulation, and co-fixing module. The test results are reported
in Table IV. As PAFs possess purely 2D information, the dis-
tance analogous to elo in (8) is defined as the distance between
re-projection points and the limb on the image plane (details
available in Supp. III). Note that there is no factor to bound ad-
jacent joints together like α in (8), so the joints are optimized
independently.

The results in Table IV suggest the necessity of each compo-
nent. For LOF, the potential lies in the extra dimension compared
to PAF. This dimension is capable of connoting information per-
pendicular to the image plane, and correlating adjacent joints in
triangulation stage, forcing the model to optimize human pose
as a whole. The performance drops while changing from LOF
to PAF in both camera settings validate the above analysis. Ad-
ditionally, considering the results of Baseline, LOF, and “LOF +
CompTri.,” we conclude that LOF does not significantly benefit
pre-training, but is crucial as an integral component of compound
triangulation. The effect increases as the number of views de-
creases. By comparing the last two lines, it is also evident that
co-fixing module promotes general performance. The marginal
error drop is mostly due to the infrequency of double counting.
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VI. CONCLUSION

In this paper, we propose a novel framework to incorporate
Limb Orientation Field, i.e. LOF to promote stereoscopic 3D
human pose estimation. Major contributions include an explicit
module known as compound triangulation to fuse multi-view
limb estimations with 2D poses, and a post-processing mod-
ule named co-fixing to eliminate ambiguity between joints. The
experiment results validate the effect in stereoscopic settings
and the adaptability to general multi-view scenes. The effect of
each module is also validated in the ablation study. Future work
is planned to improve co-fixing module. Powered by convolu-
tions, it is potentially possible to be integrated into end-to-end
training, which can eliminate the need for predefined filtering
parameters and increase its generality. The fixing process could
also incorporate cross-view information for better accuracy.
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pose triangulation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2022, pp. 11028–11037.

[15] H. Ye, W. Zhu, C. Wang, R. Wu, and Y. Wang, “Faster voxelpose: Real-time
3D human pose estimation by orthographic projection,” in Proc. Eur. Conf.
Comput. Vis., 2022, pp. 142–159.

[16] R. I. Hartley and P. Sturm, “Triangulation,” Comput. Vis. Image Under-
standing, vol. 68, no. 2, pp. 146–157, 1997.

[17] D. Xiang, H. Joo, and Y. Sheikh, “Monocular total capture: Posing face,
body, and hands in the wild,” in Proc. IEEE/CVF Conf. Comput. Vis. Pat-
tern Recognit., 2019, pp. 10965–10974.

[18] D. Liu et al., “Improving 3D human pose estimation via 3D part affinity
fields,” in Proc. Winter Conf. Appl. Comput. Vis., 2019, pp. 1004–1013.

[19] H. Wu and B. Xiao, “3D human pose estimation via explicit compositional
depth maps,” in Proc. AAAI Conf. Artif. Intell., 2020, pp. 12378–12385.

[20] S. T. Barnard and M. A. Fischler, “Computational stereo,” ACM Comput.
Surv., vol. 14, no. 4, pp. 553–572, 1982.

[21] H. Qiu, C. Wang, J. Wang, N. Wang, and W. Zeng, “Cross view fusion for
3D human pose estimation,” in Proc. IEEE/CVF Int. Conf. Comput. Vis.,
2019, pp. 4342–4351.

[22] V. Ramakrishna, D. Munoz, M. Hebert, J. Andrew Bagnell, and Y. Sheikh,
“Pose machines: Articulated pose estimation via inference machines,” in
Proc. IEEE Eur. Conf. Comput. Vis., 2014, pp. 33–47.

[23] Z. Cao, G. Hidalgo, T. Simon, S. -E. Wei, and Y. Sheikh, “OpenPose:
Realtime multi-person 2D pose estimation using part affinity fields,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 1, pp. 172–186,
Jan. 2021.

[24] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime multi-person 2D
pose estimation using part affinity fields,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2017, pp. 7291–7299.

[25] C. Luo, X. Chu, and A. Yuille, “OriNet: A fully convolutional network for
3D human pose estimation,” 2018, arXiv:1811.04989.

[26] R. I. Hartley, R. Gupta, and T. Chang, “Stereo from uncalibrated cameras,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 1992, pp. 761–764.

[27] X. Zhao, Y. Fu, H. Ning, Y. Liu, and T. S. Huang, “Human pose regres-
sion through multiview visual fusion,” IEEE Trans. Circuits Syst. Video
Technol., vol. 20, no. 7, pp. 957–966, Jul. 2010.

[28] J. Gall, B. Rosenhahn, T. Brox, and H.-P. Seidel, “Optimization and filter-
ing for human motion capture: A multi-layer framework,” Int. J. Comput.
Vis., vol. 87, pp. 75–92, 2010.

[29] M. Hofmann and D. M. Gavrila, “Multi-view 3d human pose estima-
tion in complex environment,” Int. J. Comput. Vis., vol. 96, pp. 103–124,
2012.

[30] Y. Liu, C. Stoll, J. Gall, H.-P, Seidel, and C. Theobalt, “Markerless motion
capture of interacting characters using multi-view image segmentation,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2011, pp. 1249–1256.

[31] A. Newell, K. Yang, and J. Deng, “Stacked hourglass networks for hu-
man pose estimation,” in Proc. IEEE Eur. Conf. Comput. Vis., 2016,
pp. 483–499.

[32] K. Sun, B. Xiao, D. Liu, and J. Wang, “Deep high-resolution representation
learning for human pose estimation,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., 2019, pp. 5693–5703.

[33] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh, “Convolutional pose
machines,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 4724–4732.

[34] B. Xiao, H. Wu, and Y. Wei, “Simple baselines for human pose estimation
and tracking,” in Proc. IEEE Eur. Conf. Comput. Vis., 2018, pp. 466–481.

[35] G. Hidalgo et al., “Single-network whole-body pose estimation,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis., 2019, pp. 6982–6991.

[36] D. Osokin, “Real-time 2D multi-person pose estimation on CPU:
Lightweight openpose,” 2018, arXiv:1811.12004.

[37] M. Fischler and R. Elschlager, “The representation and matching of pic-
torial structures,” IEEE Trans. Comput., vol. C-22, no. 1, pp. 67–92,
Jan. 1973.

[38] M. Burenius, J. Sullivan, and S. Carlsson, “3D pictorial structures for
multiple view articulated pose estimation,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2013, pp. 3618–3625.

[39] Y. Yang and D. Ramanan, “Articulated pose estimation with flexible
mixtures-of-parts,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2011, pp. 1385–1392.

[40] L. Ke, M.-C. Chang, H. Qi, and S. Lyu, “Multi-scale structure-aware net-
work for human pose estimation,” in Proc. Eur. Conf. Comput. Vis., 2018,
pp. 713–728.

[41] A. Kamel, B. Sheng, P. Li, J. Kim, and D. D. Feng, “Hybrid refinement-
correction heatmaps for human pose estimation,” IEEE Trans. Multimedia,
vol. 23, pp. 1330–1342, 2021.

[42] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of deep
visuomotor policies,” J. Mach. Learn. Res., vol. 17, no. 1, pp. 1334–1373,
2016.

[43] M. E. Fathy, A. S. Hussein, and M. F. Tolba, “Fundamental matrix esti-
mation: A study of error criteria,” Pattern Recognit. Lett., vol. 32, no. 2,
pp. 383–391, 2011.

[44] C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu, “Human3. 6 m:
Large scale datasets and predictive methods for 3D human sensing in
natural environments,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 36,
no. 7, pp. 1325–1339, Jul. 2014.

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on November 24,2024 at 20:44:13 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: JOINT-LIMB COMPOUND TRIANGULATION WITH CO-FIXING FOR STEREOSCOPIC HUMAN POSE ESTIMATION 10719

[45] M. Trumble, A. Gilbert, C. Malleson, A. Hilton, and J. Collomosse, “Total
capture: 3D human pose estimation fusing video and inertial sensors,” in
Proc. 28th Brit. Mach. Vis. Conf., 2017, pp. 1–13.

[46] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[47] T.-Y. Lin et al., “Microsoft coco: Common objects in context,” in Proc.
IEEE Eur. Conf. Comput. Vis., 2014, pp. 740–755.

[48] M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele, “2D human pose
estimation: New benchmark and state of the art analysis,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2014, pp. 3686–3693.

[49] J. Deng et al., “ImageNet: A large-scale hierarchical image database,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2009, pp. 248–255.

[50] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Representations, 2015.

[51] G. Pavlakos, X. Zhou, K. G. Derpanis, and K. Daniilidis, “Harvesting
multiple views for marker-less 3D human pose annotations,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2017, pp. 6988–6997.

[52] D. Tome, M. Toso, L. Agapito, and C. Russell, “Rethinking pose in 3D:
Multi-stage refinement and recovery for markerless motion capture,” in
Proc. IEEE Int. Conf. 3D Vis., 2018, pp. 474–483.

[53] M. Trumble, A. Gilbert, A. Hilton, and J. Collomosse, “Deep autoencoder
for combined human pose estimation and body model upscaling,” in Proc.
IEEE Eur. Conf. Comput. Vis., 2018, pp. 784–800.

Zhuo Chen received the B.E. degree in 2021 from
the Department of Automation, Shanghai Jiao Tong
University, Shanghai, China, where he is currently
working toward the M.S. degree. His research inter-
ests include human pose estimation, multiview geom-
etry, and machine learning.

Xiaoyue Wan received the B.S. degree in automa-
tion and the M.S. degree in control engineering from
the Southeast University, Nanjing, China, in 2015 and
2018, respectively. She is currently working toward
the Ph.D. degree with the School of Electronic In-
formation and Electrical Engineering, Shanghai Jiao
Tong University, Shanghai, China. Her research in-
terests include computer vision and human pose esti-
mation.

Yiming Bao received the B.S. degree in biomedical
engineering from the Huazhong University of Science
and Technology, Wuhan, China, in 2019. He is cur-
rently working toward the Ph.D. degree with the De-
partment of Biomedical Engineering, Shanghai Jiao
Tong University, Shanghai, China. His research in-
terests include human motion, visual-inertial fusion,
and deep learning.

Xu Zhao (Member, IEEE) received the Ph.D. de-
gree in pattern recognition and intelligent system
from Shanghai Jiao Tong University (SJTU), Shang-
hai, China, in 2011. He is currently a Full Professor
with the Department of Automation, School of Elec-
tronic Information and Electrical Engineering, SJTU.
He was a Visiting Scholar with the Beckman Insti-
tute, University of Illinois Urbana-Champaign, Ur-
bana, IL, USA, from 2007 to 2008, and a Postdoc Re-
search Fellow with North eastern University, Boston,
MA, USA, from 2012 to 2013. His research interests

include visual analysis of human motion, machine learning, and image/video
processing.

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on November 24,2024 at 20:44:13 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


