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Notations
Since the main paper involves physical laws in deductions,
there are plenty of notations. We define them in Table. 1 to
help understand the technique details and principles of the
main paper. By default, for each sample, we use i to represent
the ith point sampled from the object surface, j to represent
the jth label, and h to represent the hth hand part.

Additionally, there are several definitions to clarify. The
affinity set Aj for calculating the force labels is defined as:

Aj = {i ∈ [1, n]|argminjd({pi,ni}, {cj ,nj}) = j}
∩{i ∈ [1, n]|Ci > Cth},

(1)

and the normal fixed distance is:

d({p1,n1}, {p2,n2}) = ∥p1 − p2∥+ w(1− nT
1 n2) (2)

where w = 0.1 in our experiment. The distance is used in
calculating the contact maps and in part point clustering.

Automatic Labeling Procedure
The labeling procedure consists of 3 parts: scene preparation,
simulation and labeling. The input sample include a pair of
interacting hand and object meshes, which are first decom-
posed to convex parts and stored in a MJCF file. The file was
then read by the simulator (Todorov, Erez, and Tassa 2012)
with different preset parameters, after which the force labels
with the least center of mass (CoM) displacement is selected.
Finally, the labels are obtained by selecting the label with the
least acceleration under a displacement threshold.

Preparation
The physics engine requires the input geometries to be com-
posed of convex parts to determine collisions, so it is neces-
sary to do convex decomposition. Considering the different
geometric properties of hand and object meshes, we utilize
different procedures.

Hand meshes are of fixed topology (MANO model
(Romero, Tzionas, and Black 2022)), so the decomposition
can be the same for all hands. To directly determine the hand
part label of each labeled force, we decompose the hands in
the same way as the part definition in the main paper. i.e., if

the blend-skinning weight matrix in MANO is W ∈ R778×16,
then the part label of the ith point is hi = argmaxj{Wij}.

After that, the hand mesh is partitioned according to the
part labels and the resulting parts are nearly convex, so we
directly take the convex hulls of the parts to get the convex
decomposed result.

Object meshes are of different topologies, so we utilized a
more general convex decomposition algorithm, i.e., CoACD
(Wei et al. 2022) to decompose.

The output of this step include a series of mesh files storing
all the decomposed meshes, and a MJCF file storing the
positions of all the decompositions.

Simulation
The files from the previous step builds up the scene for simu-
lation, yet we find it common in simulation when the object
slips away from the hand when the GT label is intuitively a
stable grasp. As stated in the main paper, this happens due to
the unavoidable errors in hand surface deformation and im-
perfect approximation of the soft tissues of the hand, which
are very complicated problems. Additionally, what we need is
essentially one possible force label of the current hand grasp
sample, and therefore keeping the object stable is enough.

Thus, we allow slight displacement and use parameter
searching technique to find the parameter with the least dis-
placement within 1 s of simulation. The basic idea is very
simple: if we can find a stable state with: 1) a small object
CoM displacement; 2) reasonable simulation parameter set-
tings, then the forces applied to the object at this state is one
possible force combination of the current grasp. Based on
this, we design the simulation procedure as follows:

For a certain set of parameters, the simulation is done by
fixing the hand position and setting the object free. In each
simulation timestep, the contact labels (including contact
points and forces) and the object displacement are saved.
The parameter to search for the simulation parameter is de-
termined to be ‘damp ratio’ of the MuJoCo simulator, de-
noted by r, which directly affects the ‘reference acceleration‘.
When penetrations are detected, a spring-damper model (Liu
et al. 2013) is applied to generate compulsory force at each
contact point. This parameter controls the stiffnesss of the
models and thus the resulting forces.

The parameter searching is done in coarse-to-fine man-
ner. The coarse searching points are uniformly distributed in



Category Notation Domain Description

General
variables

n Z+ The number of sampled points
nkp N The number of chosen keypoints.
R set The non-negative real nubmer set. R = R+ ∪ {0}

Physical
variables

a R3 Translational acceleration of the object
α R3 Rotational acceleration of the object

pCoM R3 Object center of mass.
Fi R The normal force value of point i
F Rn F = [F1, F2, . . . , Fn]

T

Ffi R3 The friction vector of point i
µ R The friction coefficient for all contact surfaces. Set to 1 in our experi-

ments.
γi, δi [−1, 1] The relative friction along axes bi and ti. Ffi = µγibi + µδiti

Force
labels

Nj R The normal force value of label j
cj R3 The position of labeled contact point in label j
Aj set The affinity point set of label j. The definition is Eq. (1)

Geometric
variables

pi R3 The position of point i.
ni R3 The surface normal of sampled point i; ∥ni∥ = 1.

bi, ti R3 The two tangential axes perpendicular to ni; ni,bi, ti form a unit
orthogonal basis

d R Distance or object center of mass displacement.

Machine learning
variables

vF {0, 1}s The one-hot vector representation of the force in point i.
L R The loss in training and optimization.
w R The coefficient applied to the loss term

Table 1: Notation table of the main paper

logarithm space to cover a wider range of parameters:

ri = exp

{
N − i

N − 1
log(rmin) +

i− 1

N − 1
log(rmax)

}
. (3)

Suppose the optimal parameter in Eq. (3) is ri0 , then the
fine searching is done linearly by:

r′i =
N ′ − i

N ′ − 1
r′min +

i− 1

N ′ − 1
r′max; (4)

r′min =

{
ri0−1, if i0 ≥ 2;

0.1ri0 , otherwise
; (5)

r′max =

{
ri0+1, if i0 ≤ N − 1

1.2ri0 , otherwise.
(6)

After this step, the simulation results from the parameter
with the least displacement is returned as the resulting sim-
ulation sequence. In the labeling procedure, the parameters
are N = 25, N ′ = 20, rmin = −3, rmax = 3.

Labeling
For the optimal sequence, the final displacement pT is di-
rectly used as part of the label. Then the frame with the least
acceleration under displacement threshold dth = 5 cm is
used as the force label. Specifically, we calculate acceleration
by ai = ∥pi +pi+2 − 2pi+1∥. Then the frame with the least

acceleration is used as the label frame, where all force labels
are output as the label for this sample.

Finally, the label consists of the local contact frame
Olocal ∈ O(3), the local force vector Fj , the contact point
cj and the contact hand part label hj . The first dimension
of the local force vector is exactly the normal contact force
Nj . We can obtain the global force vector by OlocalFj but in
experiments we only need the normal force for training.

Detailed Simulation Settings
In simulation using MuJoCo, the timestep is set to 1ms
and the total simulation time is T = 1 s, so the simulation
takes 1000 steps. The impedance parameters are less strict
than the default parameters to mimic the softness of hand tis-
sues. Following the notations from official MuJoCo documen-
tation, the parameters are d0 = 0.7, dwidth = 0.9,width =
0.006,midpoint = 0.5, and power = 2. The surface fric-
tion coefficients are set to the same for hands and all objects.
The margin parameter, which indicates the minimum dis-
tance of two bodies to be considered in contact, is set to 3mm.
The tangential, torsional, and rolling friction coefficients are
1, 0.5, and 0.01 respectively. The object is connected to the
worldbody with a free joint, where the damping ratio is set to
1. All other parameters are set to default.

Label statistics
In Fig. 2, we plot the density curve of all labeled contact
normal force values is shown in fig. 3 and the separate curves
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Figure 1: The labeling procedure

Figure 2: Distribution of all part forces in violin plot. For each violin, the outer bound marks the density curve of the data, the
thick line in the middle stands for the 2nd and 3rd quarters of the data, and the white point marks the average.

Figure 3: Distribution of all labeled forces.
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Figure 4: Hand part names

for forces on all hand parts are shown in Fig. 4. While the
force labels of all parts spread a broad range just like the
overall distribution shown in the main paper, we can still find
some interesting conclusions by comparing the average: The
tip of thumb (‘Thumb3’) has the largest average force, and the



5 finger tips provides the top-5 largest forces. This indicates
that we human usually interact with objects by finger tips.
The thumb, usually opposing the rest four fingers, provides
the largest average forces in daily interactions.

Fig. 5 shows the distribution of all simulation displace-
ments in the labeling process, where 60%∼ 70% are from
the first bin, with a displacement near to 0. Note that another
peak appears at ∼350 cm, which indicates that the object is
not held at all and falls freely. The displacement is slightly
smaller than that of a real 1 s free fall (∼490 cm) due to the
non-zero damping of the simulator parameter.

Fig. 6 shows some labeled samples and most of the cases
are reasonable. The bottom 4 samples are not stable in the
simulator which can be expected by imaging the way of
grasping. These samples are therefore assigned lower weights
in training.

Experiment Settings and Extra results
Implementation Details
In our experiments, object meshes are sampled 2048 points.
For the training set, samples with only one hand in contact are
used, and sampled every 10 frames to filter out similar poses.
All samples with left hand contacts are mirrored to right
according to (Taheri et al. 2020). The cVAE is trained with
Adam optimizer (Kingma and Ba 2015) for 100 epochs. The
learning rate is 10−2 and batch size is 64. Each epoch takes
∼6min. The partitioned SDF hand model is the one trained
by (Liu et al. 2023) on FreiHAND dataset (Zimmermann et al.
2019). In testing, we apply random rotations to the object,
but in simulations the gravity is always (0, 0,−9.81m/s2).
In pose optimization, the second initialization stage takes 200
iterations with a learning rat of 0.05, and the optimization
stage lasts 1000 iterations with a learning rate of 0.005.

The hyperparameters in training are wrec =
1, wstability = 2 and in optimizations are wc = 0.1, wpene =
0.5, wkp = 0.2, wreg = 0.01. wKL changes with steps
following (Liu et al. 2023). Training and testing are done
on 2 NVIDIA RTX4090 GPUs and an Intel Xeon W7-3445
CPU.

Runtime and Memory
Our method is based on iterative optimization, which is the
major source of time and memory consumption. As our
method requires the identification of keypoints before op-
timization and extra losses during optimization, we study
the runtime and GPU memory consumptions and compare
our method with previous state-of-the-art optimization-based
method (Liu et al. 2023). We also set up a baseline method
where only the contact map and hand part map are predicted.
There are also no keypoints in baseline method. We report
the average runtime of each batch of 20 samples and the
allocated GPU memory in Tab. 2. All experiments are run
using a single NVIDIA RTX4090 GPU.

In Tab. 2, we can see our method takes similar time and
memory as ContactGen. Our method utilizes similar global
initlization step with an extra step to determine keypoints, so
the result indicates that searching for the optimal keypoint
combinations is not computationally heavy compared to the

Method Runtime
(s / batch)

GPU Memory
Alloc (GB)

Baseline 36.0 1.65
ContactGen (Liu et al. 2023) 41.2 1.69

Ours 41.7 1.69

Table 2: Runtime and memory consumption analysis

optimization process. The runtime increase compared to base-
line method is mainly due to the initialization step, which is
also iterative. The increased memory usage is mainly caused
by the extra branch predicting forces and calculating stability
losses, which is very small compared to the overall memory
allocated (0.04GB vs. 1.69GB).

Predicted Force Samples
We show more examples of generated forces in Fig. 7. The
ground truth is obtained by running the labeling pipeline. The
samples also shows that forces predicted by our method is
closer to the ground truth, supporting the conclusion in the
main paper.

Generated Grasp Samples
In this section, we show more randomly picked generated
grasp samples while comparing our result to previous meth-
ods (GrabNet (Taheri et al. 2020) and ContactGen (Liu et al.
2023)) in Fig. 8, 9, and 10, where we can find more evidence
that our method favors grasps supporting the object from the
bottom, thus resulting in more stable and plausible grasps
statistically.
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Figure 5: The histogram of simulation displacement

Figure 6: Some force label examples. The colorful arrows
indicates the contact force directions and values, and the
gray down arrows indicates the gravity. The bottom 4
samples are unstable while the rest are stable.
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Figure 7: Some sampled force predictions. ‘Avg’ means the
result of average predictor.



(a) Wineglass

(b) Frying Pan

(c) Mug

(d) Tooth Paste

(e) Camera

(f) Binoculars
Figure 8: Extra Samples from GRAB dataset



(a) Banana

(b) Bleach Cleanser

(c) Cracker Box

(d) Power Drill

(e) Mug

Figure 9: Extra Samples from HO3D dataset (1)



(a) Mustard Bottle

(b) Pitcher Base

(c) Potted Meat Can

(d) Scissors

(e) Sugar Box

Figure 10: Extra Samples from HO3D dataset (2)


